
9. Initializations
    This topic describes operations that must be done before executing other FaceWare 
commands.    These operations should only be done once (i.e., they should not be part of 
routines or loops that are executed more than once).

FaceWare Initialization
    The command DoInit must be executed before any other call to FaceWare modules.    DoInit
searches for the LoadIt module and, if necessary, opens the program's temporary resource 
file (the name of which can be passed in uName).    Parameter c indicates which of the core 
FaceWare modules will be used by the program:
    c ≥ 0 = all core modules are in use
    c = -1 = FaceIt is not in use
    c = -2 = FaceIt & ViewIt are not in use
    c = -3 = FaceIt, ViewIt, & DialIt are not in use
    c = -4 = no core modules are in use
Passing c = 0, for example, indicates that FaceIt, ViewIt, and UtilIt will be used and causes 
these modules to be loaded and initialized.    Passing c = -4, on the other hand, skips 
initialization of the core modules and indicates that the only modules in use will be 
independent utility-type modules.
    Parameter b in DoInit can be used to request that b kilobytes of extra stack space (beyond 
the default stack size - see discussion below) be allocated by LoadIt.    This also results in 
LoadIt calling MaxApplZone to expand the heap to its limit.    b = -1 can be used to disable 
this functionality (if your program calls MaxApplZone and sets its own stack size), but most 
programmers pass b = 0 to get the default stack size.
    Parameter a is used to set bit flags that are used by FaceIt.    See the "Commands" topic in 
the FaceIt Guide for a further description of the use of this parameter. If not using FaceIt, 
pass a = 0.
    The minimum program code shown in the "Minimum Code" topic passes a = b = c = 0 to 
DoInit.    This indicates that the program will be using all of the core modules, that the stack 
size should be set to the default size, and that none of the special options supported by 
FaceIt will be used.

More About Stack Space
    The option of using parameter b to reset stack space when calling DoInit is designed to 
help those programmers who have programs that declare large arrays or records within    
routines, or pass large variables "by value" to routines.    Such "local" variables are allocated 
on the "stack" which is a block of memory of fixed size located above the program heap.    If 
the arrays or records allocated on the stack are larger than the available stack space, then 
the stack will clobber memory in the heap, leading to a System crash.
    Another important point to understand about the stack is that its growth is cumulative as 
one routine calls another.    For example, suppose routine A calls B, and then B calls C.    If 
routine A declares a 1000-element integer*4 array, B declares a 2000-element real*8 array, 
and C declares a 500-element integer*2 array, then the total stack memory used to call C 
would be at least:    (1000)(4) + (2000)(8) + (500)(2) = 21000 bytes or about 20K.
    One way of increasing the stack space is to pass b > 0 when calling DoInit.    Other options 
may be provided by your development environment (in which case you should pass b = -1 to
disable DoInit's actions).    Another approach is to minimize stack use by making all large 
arrays or records global to the program (this would include Fortran COMMON blocks), or 
allocate large variables as dynamic blocks in the program heap.
    The toolbox call "StackSpace" can be used to check stack space from within a routine at 
runtime, but a calculation like that shown above will usually be enough to tell you that a 
problem exists.    The PeekCt control shipped with ViewIt can also be added to any ViewIt 
window to show the current stack and heap space.    Also note that the default stack space 
on older Macs (8K) is much smaller than that used with newer Macs, so having sufficient 



stack space on a newer Mac does not guarantee that it will work on an older one.

Record Initialization
    In cases where a (non-core) FaceWare module requires use of an additional, global record 
(defined in a "Stor" file), this record must usually be initialized with the command DoPrep.    
DoPrep uses the values passed to it to set up the record's "header" (its first 16 bytes) so that
it can be used with the corresponding FaceWare module:
 FaceIt(nil,DoPrep,a,b,c,0);          Pascal
 FaceIt(0L,DoPrep,a,b,c,0L);          /* C */
 call FaceIt(0,DoPrep,a,b,c,0)      !Fortran
where a is the record's memory address, b is the module's baseID, and c is its versID.    See 
demo programs that contain calls to DoPrep for examples of its use.    Note that DoPrep is 
not necessary to access any of the core modules since the fRec record used by them is 
automatically initialized when DoInit is called.
    These extra, global records required by modules are often referred to as "shared records" 
to denote the fact that they are global records that are shared between the module and the 
main program.


